Esempio Mobile Media Modello
Media mobile Questo esempio vi insegna come calcolare la media mobile di una serie storica in Excel. Una media mobile viene utilizzata per appianare le irregolarità (picchi e valli) di riconoscere facilmente le tendenze. 1. In primo luogo, consente di dare un'occhiata alla nostra serie temporali. 2. Nella scheda dati fare clic su Analisi dati. Nota: non riesci a trovare il pulsante Data Analysis Clicca qui per caricare il componente aggiuntivo Strumenti di analisi. 3. Selezionare media mobile e fare clic su OK. 4. Fare clic nella casella intervallo di input e selezionare l'intervallo B2: M2. 5. Fare clic nella casella Intervallo e digitare 6. 6. Fare clic nella casella Intervallo di output e selezionare cella B3. 8. Tracciare la curva di questi valori. Spiegazione: perché abbiamo impostato l'intervallo di 6, la media mobile è la media degli ultimi 5 punti di dati e il punto di dati corrente. Come risultato, i picchi e le valli si distendono. Il grafico mostra una tendenza all'aumento. Excel non può calcolare la media mobile per i primi 5 punti di dati, perché non ci sono abbastanza punti dati precedenti. 9. Ripetere i passaggi 2-8 per l'intervallo 2 e l'intervallo 4. Conclusione: Il più grande l'intervallo, più i picchi e le valli si distendono. Minore è l'intervallo, più le medie mobili sono i dati effettivi points. Weighted medie mobili: I principi fondamentali Nel corso degli anni, i tecnici hanno trovato due problemi con la media mobile semplice. Il primo problema è il lasso di tempo della media mobile (MA). La maggior parte degli analisti tecnici ritengono che l'azione dei prezzi. l'apertura o la chiusura del prezzo delle azioni, non è sufficiente su cui dipendere per prevedere correttamente i segnali di acquisto o vendita delle azioni di crossover MAs. Per risolvere questo problema, gli analisti ora assegnare più peso ai dati relativi ai prezzi più recenti utilizzando la media mobile esponenziale livellata (EMA). (Per saperne di più nell'esplorazione esponenziale Pesato media mobile.) Un esempio per esempio, utilizzando un 10-giorni MA, un analista avrebbe preso il prezzo del 10 ° giorno di chiusura e moltiplicare questo numero per 10, il nono giorno per le nove, l'ottavo giorno per otto e così via alla prima della MA. Una volta che il totale è stato determinato, l'analista poi dividere il numero per l'aggiunta dei moltiplicatori. Se si aggiungono i moltiplicatori del 10-day MA esempio, il numero è 55. Questo indicatore è conosciuta come la media mobile linearmente ponderata. (Per la lettura correlata, controllare semplici medie mobili Fai Trends distinguersi.) Molti tecnici sono convinti sostenitori del esponenzialmente lisciato media mobile (EMA). Questo indicatore è stato spiegato in tanti modi diversi che confonde gli studenti e degli investitori. Forse la migliore spiegazione viene da John J. Murphys: Analisi tecnica dei mercati finanziari, (pubblicato dal New York Institute of Finance, 1999): Il modo esponenziale lisciato movimento indirizzi medi sia dei problemi connessi con la media mobile semplice. Innanzitutto, la media esponenziale livellata assegna un peso maggiore ai dati più recenti. Pertanto, è una media mobile ponderata. Ma mentre assegna minore importanza ai dati dei prezzi passati, esso include nel suo calcolo tutti i dati nella vita dello strumento. Inoltre, l'utente può regolare il coefficiente di dare maggiore o minore peso al più recente prezzo giorni, che viene aggiunta ad una percentuale del valore giorni precedente. La somma dei due valori percentuali aggiunge fino a 100. Per esempio, l'ultimo giorni prezzo potrebbe essere assegnato un peso di 10 (.10), che viene aggiunto al giorno precedente peso di 90 (.90). Questo dà l'ultimo giorno 10 del peso totale. Questo sarebbe l'equivalente di una media di 20 giorni, dando l'ultimo giorni prezzo un valore inferiore di 5 (.05). Figura 1: esponenziale Smoothed media mobile È possibile che questo grafico mostra il Nasdaq Composite Index dalla prima settimana di agosto 2000 al 1 ° giugno 2001. Come si può vedere chiaramente, l'EMA, che in questo caso utilizza i dati relativi ai prezzi di chiusura nel corso di un periodo di nove giorni, ha segnali di vendita precisi sul 8 settembre (contrassegnato da un nero freccia verso il basso). Questo era il giorno in cui l'indice rotto sotto il livello 4.000. La seconda freccia nera indica un'altra tappa verso il basso che i tecnici sono stati effettivamente aspettavano. Il Nasdaq non ha potuto generare abbastanza volume e interesse da parte degli investitori al dettaglio per rompere il marchio 3.000. E poi tuffò di nuovo a toccare il fondo a 1619,58 su aprile 4. La fase di rialzo del 12 aprile è contrassegnato da una freccia. Qui l'indice ha chiuso a 1,961.46, e tecnici ha cominciato a vedere i gestori di fondi istituzionali che iniziano a prendere alcuni affari come Cisco, Microsoft e alcuni dei problemi legati all'energia. (Leggi i nostri articoli correlati: Moving Buste media:. Raffinazione uno strumento popolare Trading and Moving Average rimbalzo) Beta è una misura della volatilità o rischio sistematico, di un titolo o di un portafoglio rispetto al mercato nel suo complesso. Un tipo di imposta riscossa sulle plusvalenze sostenute da individui e aziende. Le plusvalenze sono i profitti che un investitore. Un ordine per l'acquisto di un titolo pari o inferiore a un determinato prezzo. Un ordine di acquisto limite consente agli operatori e agli investitori di specificare. Un Internal Revenue Service (IRS) regola che consente per i prelievi senza penalità da un account IRA. La regola prevede che. La prima vendita di azioni da una società privata al pubblico. IPO sono spesso emesse da piccole, le aziende più giovani che cercano la. Rapporto DebtEquity è rapporto debito utilizzato per misurare una leva finanziaria company039s o un rapporto debito utilizzato per misurare un individual.8.4 modello a media mobile Invece di utilizzare valori passati della variabile tempo in una regressione, un modello di media mobile utilizza errori di previsione del passato in una regressione modello - come. y c et theta e theta e puntini theta e, dove et è rumore bianco. Ci riferiamo a questo come un modello MA (q). Naturalmente, noi non osserviamo i valori di et, quindi non è davvero una regressione nel senso comune. Si noti che ogni valore di yt può essere pensato come una media mobile ponderata degli ultimi pochi errori di previsione. Tuttavia, modello a media mobile non deve essere confuso con lo spostamento di smoothing media abbiamo discusso nel capitolo 6. Un modello a media mobile viene utilizzato per prevedere i valori futuri mentre si muove smoothing media viene utilizzato per stimare l'andamento del ciclo dei valori del passato. Figura 8.6: Due esempi di dati da modello a media mobile con parametri diversi. Sinistra: MA (1) con y t 20e t 0.8e t-1. A destra: MA (2) con y t e t - e t-1 0.8e t-2. In entrambi i casi, e t è normalmente distribuito rumore bianco a media nulla e varianza uno. Figura 8.6 mostra alcuni dati da un MA (1) modello e un (2) il modello MA. La modifica dei parametri theta1, punti, risultati thetaq in diversi modelli delle serie storiche. Come per i modelli autoregressivi, la varianza del termine di errore et cambierà solo la scala della serie, non gli schemi. È possibile scrivere qualsiasi modello stazionario AR (p) come modello MA (infty). Ad esempio, utilizzando la sostituzione ripetute, possiamo dimostrare questo per un AR (1) Modello: iniziare YT amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 E et amp phi13y phi12e phi1 E et amptext fine fornito -1 lt phi1 lt 1, il valore di phi1k otterrà più piccolo come k diventa più grande. Così alla fine si ottiene YT et phi1 e phi12 e phi13 e cdots, un (infty) processo MA. Il risultato inverso vale se imponiamo alcuni vincoli sui parametri MA. Poi il modello MA è chiamato invertibile. Vale a dire, che possiamo scrivere qualsiasi processo invertibile MA (q) come un processo AR (infty). modelli invertibili non sono semplicemente ci permettono di convertire da modelli MA a AR modelli. Hanno anche alcune proprietà matematiche che li rendono più facili da utilizzare nella pratica. I vincoli invertibilità sono simili ai vincoli di stazionarietà. Per un MA (1) Modello: -1lttheta1lt1. Per un MA (2) Modello: -1lttheta2lt1, theta2theta1 gt-1, theta1 - theta2 lt 1. condizioni più complesse valgono per qge3. Anche in questo caso, R si prenderà cura di questi vincoli quando si stima il models.2.1 modello a media mobile (modelli MA) modelli di serie tempo noti come modelli ARIMA possono includere termini autoregressivi eo movimento termini medi. In settimana 1, abbiamo imparato un termine autoregressivo in un modello di serie temporale per la variabile x t è un valore ritardato di x t. Per esempio, un ritardo 1 termine autoregressivo è x t-1 (moltiplicato per un coefficiente). Questa lezione definisce lo spostamento termini medi. Un termine media mobile in un modello di serie storica è un errore di passato (moltiplicata per un coefficiente). Sia (wt Overset N (0, sigma2w)), il che significa che la w t sono identicamente, indipendentemente distribuite, ciascuna con una distribuzione normale con media 0 e la stessa varianza. Il modello a media mobile 1 ° ordine, indicato con MA (1) è (xt mu peso theta1w) L'ordine di 2 ° modello a media mobile, indicato con MA (2) è (mu XT peso theta1w theta2w) La q ° ordine modello a media mobile , indicato con MA (q) è (MU XT WT theta1w theta2w punti thetaqw) Nota. Molti libri di testo e programmi software definiscono il modello con segni negativi prima dei termini. Ciò non modificare le proprietà teoriche generali del modello, anche se non capovolgere i segni algebrici di valori dei coefficienti stimati ei termini (unsquared) nelle formule per ACFS e varianze. È necessario controllare il software per verificare se vi siano segni negativi o positivi sono stati utilizzati al fine di scrivere correttamente il modello stimato. R utilizza segnali positivi nel suo modello di base, come facciamo qui. Proprietà teoriche di una serie storica con un MA (1) Modello nota che l'unico valore diverso da zero nella ACF teorico è di lag 1. Tutti gli altri autocorrelazioni sono 0. Quindi un ACF campione con un autocorrelazione significativa solo in ritardo 1 è un indicatore di un possibile MA (1) modello. Per gli studenti interessati, prove di queste proprietà sono in appendice a questo volantino. Esempio 1 Supponiamo che un MA (1) modello è x t 10 w t 0,7 w t-1. dove (WT overset N (0,1)). Così il coefficiente 1 0.7. L'ACF teorica è data da una trama di questa ACF segue. La trama appena mostrato è l'ACF teorico per un MA (1) con 1 0.7. In pratica, un campione abituato di solito forniscono un modello così chiara. Utilizzando R, abbiamo simulato n 100 valori di esempio utilizzando il modello x t 10 w t 0,7 w t-1 dove w t IID N (0,1). Per questa simulazione, un appezzamento serie storica dei dati di esempio segue. Non possiamo dire molto da questa trama. L'ACF campione per i dati simulati segue. Vediamo un picco in ritardo 1 seguito da valori generalmente non significativi per ritardi passato 1. Si noti che il campione ACF non corrisponde al modello teorico della MA sottostante (1), vale a dire che tutte le autocorrelazioni per i ritardi del passato 1 saranno 0 . un campione diverso avrebbe un po 'diverso ACF esempio riportato di seguito, ma probabilmente hanno le stesse caratteristiche generali. Theroretical proprietà di una serie storica con un modello MA (2) Per la (2) il modello MA, proprietà teoriche sono i seguenti: Si noti che gli unici valori diversi da zero nel ACF teorica sono per ritardi 1 e 2. Autocorrelazioni per ritardi superiori sono 0 . Così, un ACF campione con autocorrelazioni significativi a ritardi 1 e 2, ma autocorrelazioni non significative per ritardi più elevato indica una possibile mA (2) modello. iid N (0,1). I coefficienti sono 1 0,5 e 2 0.3. Poiché si tratta di un MA (2), l'ACF teorica avrà valori diversi da zero solo in caso di ritardi 1 e 2. I valori delle due autocorrelazioni diversi da zero sono un grafico della ACF teorica segue. è come quasi sempre accade, i dati di esempio solito si comportano abbastanza così perfettamente come teoria. Abbiamo simulato n 150 valori di esempio per il modello x t 10 w t 0,5 w t-1 .3 w t-2. dove w t iid N (0,1). La trama serie storica dei dati segue. Come con la trama serie per la MA (1) i dati di esempio, non puoi dire molto da esso. L'ACF campione per i dati simulati segue. Il modello è tipico per le situazioni in cui un modello MA (2) può essere utile. Ci sono due picchi statisticamente significative a ritardi 1 e 2 seguiti da valori non significativi per altri ritardi. Si noti che a causa di errore di campionamento, l'ACF campione non corrisponde al modello teorico esattamente. ACF per General MA (q) Models Una proprietà di modelli MA (q), in generale, è che ci sono autocorrelazioni diversi da zero per i primi ritardi Q e autocorrelazioni 0 per tutti i GAL gt q. Non unicità di collegamento tra i valori di 1 e (rho1) in MA (1) Modello. Nella (1) Modello MA, per qualsiasi valore di 1. il reciproco 1 1 dà lo stesso valore per esempio, utilizzare 0,5 per 1. e quindi utilizzare 1 (0,5) 2 per 1. Youll ottenere (rho1) 0,4 in entrambi i casi. Per soddisfare una limitazione teorica chiamato invertibilità. abbiamo limitare MA (1) modelli di avere valori con valore assoluto inferiore 1. Nell'esempio appena dato, 1 0.5 sarà un valore di parametro ammissibile, che non sarà 1 10.5 2. Invertibilità dei modelli MA Un modello MA si dice che sia invertibile se è algebricamente equivalente a un modello AR ordine infinito convergenti. Facendo convergere, si intende che i coefficienti AR diminuiscono a 0 mentre ci muoviamo indietro nel tempo. Invertibilità è una limitazione programmata nel software di serie storiche utilizzate per stimare i coefficienti dei modelli con i termini MA. La sua non è una cosa che controlliamo per l'analisi dei dati. Ulteriori informazioni sul restrizione invertibilit'a per MA (1) modelli è riportato in appendice. Avanzate teoria Note. Per un modello MA (q) con un determinato ACF, vi è un solo modello invertibile. La condizione necessaria per invertibilità è che i coefficienti hanno valori tali che l'equazione 1- 1 y-. - Q q y 0 ha soluzioni per y che non rientrano nel cerchio unitario. R Codice per gli esempi in Esempio 1, abbiamo tracciato l'ACF teorica del modello x t 10 w t. 7W t-1. e poi simulato n 150 valori di questo modello e tracciato le serie temporali del campione e l'ACF campione per i dati simulati. I comandi R utilizzati per tracciare la ACF teoriche sono state: acfma1ARMAacf (Mac (0,7), lag. max10) 10 ritardi di ACF per MA (1) con theta1 0,7 lags0: 10 crea una variabile denominata ritardi che va da 0 a 10. trama (ritardi, acfma1, xlimc (1,10), ylabr, typeh, principale ACF per MA (1) con theta1 0,7) abline (H0) aggiunge un asse orizzontale per la trama il primo comando determina l'ACF e lo memorizza in un oggetto chiamato acfma1 (la nostra scelta del nome). Il comando plot (il 3 ° comando) trame in ritardo rispetto ai valori ACF per ritardi da 1 a 10. Il parametro ylab Contrassegni l'asse Y e il parametro principale mette un titolo sul terreno. Per visualizzare i valori numerici della ACF è sufficiente utilizzare il comando acfma1. La simulazione e le trame sono state fatte con i seguenti comandi. xcarima. sim (N150, elenco (Mac (0,7))) Simula n 150 valori da MA (1) xxc10 aggiunge 10 per rendere medi default 10. simulazione a significare 0. plot (x, TypeB, mainSimulated MA (1) i dati) ACF (x, xlimc (1,10), mainACF per dati campione simulati) nell'Esempio 2, abbiamo tracciato l'ACF teorica del modello xt 10 wt .5 w t-1 .3 w t-2. e poi simulato n 150 valori di questo modello e tracciato le serie temporali del campione e l'ACF campione per i dati simulati. I comandi R utilizzati sono stati acfma2ARMAacf (Mac (0.5,0.3), lag. max10) acfma2 lags0: 10 plot (ritardi, acfma2, xlimc (1,10), ylabr, typeh, principale ACF per MA (2) con theta1 0.5, theta20.3) abline (H0) xcarima. sim (N150, l'elenco (Mac (0,5, 0,3))) xxc10 plot (x, TypeB, principale simulato MA (2) Serie) ACF (x, xlimc (1,10), mainACF per simulato MA (2) dati) Appendice: prova di proprietà di MA (1) per gli studenti interessati, qui ci sono prove per le proprietà teoriche del (1) modello MA. Varianza: (testo (xt) testo (mu peso theta1 w) 0 di testo (in peso) di testo (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Quando h 1, l'espressione precedente 1 w 2. Per ogni h 2, l'espressione precedente 0 . il motivo è che, per definizione di indipendenza della wt. E (w k w j) 0 per ogni k j. Inoltre, perché la w t hanno media 0, E (w j w j) E (w j 2) w 2. Per una serie temporale, applicare questo risultato per ottenere l'ACF cui sopra. Un modello MA invertibile è uno che può essere scritta come modello AR ordine infinito che converge in modo che i coefficienti AR convergono a 0, mentre ci muoviamo infinitamente indietro nel tempo. Bene dimostrare invertibilità per la (1) Modello MA. Abbiamo poi sostituto relazione (2) per w t-1 nell'equazione (1) (3) (ZT WT theta1 (z - theta1w) peso theta1z - theta2w) Al tempo t-2. l'equazione (2) diventa Abbiamo poi rapporto sostituto (4) per w t-2 nell'equazione (3) (ZT peso theta1 z - theta21w WT theta1z - theta21 (z - theta1w) WT theta1z - theta12z theta31w) Se dovessimo continuare a ( infinitamente), otterremmo il modello AR ordine infinito (ZT peso theta1 z - theta21z theta31z - theta41z punti) Nota però, che se 1 1, i coefficienti moltiplicando i ritardi di z aumenterà (infinitamente) in termini di dimensioni, come ci muoviamo nel tempo. Per evitare questo, abbiamo bisogno di 1 LT1. Questa è la condizione per un MA (1) Modello invertibile. Infinite Modello di ordine MA In settimana 3, e vedere che un AR (1) modello può essere convertito in un modello di ordine MA infinite: (xt - mu peso phi1w phi21w punti phik1 w punti riassumono phij1w) Questa somma dei termini di rumore bianco del passato è conosciuto come la rappresentazione causale di un AR (1). In altre parole, x t è un tipo speciale di MA con un numero infinito di termini che vanno indietro nel tempo. Questo è chiamato un ordine infinito MA o MA (). Un ordine MA finito è un AR ordine infinito ed ogni AR ordine finito è un ordine MA infinita. Ricordiamo a settimana 1, abbiamo notato che un requisito per un AR fisso (1) è che 1 LT1. Consente di calcolare il Var (x t) utilizzando la rappresentazione causale. Questo ultimo passo utilizza un fatto di base sulla serie geometrica che richiede (phi1lt1) altrimenti i diverge serie. Navigazione
Comments
Post a Comment